Support Information

Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells

Rong Fan, a Travis Emery, b Yongguo Zhang, Yuxuan Xia, d Jun Sun, sa Jiandi Wan Xia, d Jia

Figure S1. Effect of concentration of circulation cells on cell viability and proliferation. (A) Immediate cell viability after cells circulated for 20 h with an initial cell concentration of 0.01, 1, or 100 M cells/ml. The circulation speeds were 0.1 and 1.0 revolution per minute (rpm). (B) and (C) are proliferation of cells survived from 20 h circulation at 0.1 rpm and 1.0 rpm respectively. The initial cell concentration was 0.01, 1, or 100 M cells/ml. Note the different proliferation of cells in (B) at different initial cell concentrations. ** P < 0.01 and * P < 0.05 were calculated based on paired student t-test analysis. NS = non-significant.

Table S1. Calculation of average wall shear stress in the microfluidic system

Calculating parameter	Value
Viscosity (μ)	$1 \times 10^{-3} \text{Pa} \cdot \text{s}$
Volume flow rate (Q) for 0.1 rpm	$2.5 \times 10^{-10} \text{ m}^3/\text{min}$
Volume flow rate (Q) for 0.5 rpm	$1.9 \times 10^{-9} \text{m}^3/\text{min}$
Volume flow rate (Q) for 1.0 rpm	$4.3 \times 10^{-9} \mathrm{m}^3/\mathrm{min}$
Width of the constriction channel (w)	$20 \times 10^{-6} \text{ m}$
Height of the constriction channel (h)	$30 \times 10^{-6} \text{ m}$
Width of the wide microchannel (w)	$100 \times 10^{-6} \text{ m}$
Height of the wide microchannel (h)	$30 \times 10^{-6} \text{ m}$
Inner diameter of the tubing (d)	$3.8 \times 10^{-4} \text{ m}$
Approximate average shear stress in the constriction	
channel ($ au_c$)	
0.1 rpm	3.5 dyn/cm ²
0.5 rpm	26.9 dyn/cm ²
1.0 rpm	60.5 dyn/cm ²
Approximate average shear stress in the wide microchannel	
$(\tau_{\rm w})$	
0.1 rpm	0.46 dyn/cm ²
0.5 rpm	3.56 dyn/cm ²
1.0 rpm	8 dyn/cm²
Approximate average shear stress in the tubing (τ_t)	
0.1 rpm	0.0077 dyn/cm ²
0.5 rpm	0.06 dyn/cm ²
1.0 rpm	0.13 dyn/cm ²

Note that τ_c and τ_w are calculated based on the equation $\tau = \frac{\mu Q}{w^2 \times h}$, whereas τ_t is calculated based on the equation $\tau = \frac{32 \ \mu Q}{\pi d^3}$.

Table S2. Primers for real-time PCR

Gene name	Primers
β-actin F	AGAGCAAGAGAGCATCCTC
β-actin R	CTCAAACATGATCTGGGTCA
β-catenin F	AAAATGGCAGTGCGTTTAG
β-catenin R	TTTGAAGGCAGTCTGTCGTA
Bmi 1 F	AGCAGAAATGCATCGAACAA
Bmi 1 R	CCTAACCAGATGAAGTTGCTGA
c-myc F	ACAGCTACGGAACTCTTGTGC
c-myc R	GCCCAAAGTCCAATTTGAGGC
GSK-3β F	GGAACTCCAACAAGGGAGCA
GSK-3β R	TTCGGGGTCGGAAGACCTTA
P53 F	CCCAAGCAATGGATGATTTGA
P53 R	GGCATTCTGGGAGCTTCATCT